87 often a particular information resource is accessed, a spectrum of metrics may also be employed. These could include metrics such as: Cost (of particular information sources and why users chose to pay those prices, or why they did not buy), Productivity (how long users took to select appropriate information resources, whether those turned out to be desirable resources, and correlations between specific presentation styles and the productivity achieved in using the digital environment), Performance (user ratings of the value to them of the content of each information source on their performance, with an automated rating based on the number of "jumps" users make, the percentage of "hits" compared to the number of sources examined, and the length of 15 time spent examining each source), Errors (the ease of accessing each information source, and the particular difficulties encountered during use), User recommended metrics (such as assessments of relevance, value, support for achieving precise objectives, 20 etc.). Features and functions (such as the best ways others found to employ the environment, the software, the product, etc.), Etc. At the same time, users could provide assessments of the CB-PD Module system 1212 to improve (1) the style and presentation of the digital environment's information resources, so the environment's resources may be made clearer and more accessible, and (2) the ways the CB-PD 30 Module tracks user behavior and interacts with users to learn from them while they are traversing and using the digital environment, so that its own learning system may be improved 1214. This learning would be communicated to the VLR Server 35 by two-way communications as described in the preferred embodiment. These communications could occur when the user logs on to the VLR Server 1216; by having the mobile CB-PD Module on the user's system "wake up" at specified intervals (as described in the preferred embodiment) to ask 40 permission to send in the data provided by the user and stored on the user's local system; etc. If permitted by the user, the user's assessments are uploaded to the VLR Server and any new interactions are downloaded from the VLR Server to the user's system 1218. The VLR Server receives these user 45 assessments and suggestions from a number of sources such When users employ the navigation pointers and descriptions while on-line 1176 and run CB-PDM interactions immediately 1176, this data is stored directly by the 50 VLR Server 1188. When users download the navigation pointers and descriptions to their own systems 1182 where they employ them at any time 1202, they may interact with the "mobile" CB-PD Module stored on their system 1208 and this 55 data is stored on their system 1210. Similarly, a VLR Server may share all or parts of its value data 1178, 1210 with other VLR Servers or receive data from them 1188. This type of data sharing enables the propagation of "value location" data throughout a digital environment to represent the experiences of larger numbers of users in a shorter span of time 1190, 1194. It may also enable the sharing of data that improves the VLR Servers 1212, 1214 throughout a digital environment, increasing the accuracy, helpfulness and effectiveness of VLR Servers to assist users of the digital environment 1194. 88 Where digital environments overlap and provide common access to users of other digital environments, as some do already, the VLR Servers in different digital environments may share parts of their "value location" data to assist the users of other digital environments. After a VLR Server has obtained new "value location" data from users 1188 it updates the data displayed to users 1190, 1194. This may take place dynamically, in real time 1190, or it may store the new "value location" data and update its displays periodically 1190 by calculations that are completed at any scheduled interval. Those updates could take place by analysis and presentation means such as those described in the preferred embodiment, or by any other generally accepted method for analyzing data and presenting it in one or more meaningful charts, views, arrangements, hierarchies, graphical maps, sample extracts, abstracts, summary descriptions, hypertext, etc. 1194. Those presentation methods would be an important area for further research by means of the CB-PD Module 1212, 1214 to improve their accuracy and value for specific types of users who are engaged in specific tasks to help them achieve their particular objectives. There are differences between the preferred embodiment and this expression of the invention. For example, in the preferred embodiment the providers of the invention's information were a product's customers; the users of the information were the product's vendors; though these two groups have many common purposes and goals, they do not generally share the knowledge that comes from this invention except to provide improved products. In the embodiment of the invention described here, this dichotomy disappears. The invention fosters the creation of rapidly self-evolving digital environments: Users of the environment(s) both provide value judgments and they see the analyzed data from the users of the environment(s); in essence, the "marketplace" provides the data and makes use of it, becoming "self-aware" in a new and self-determined way. Thus, this embodiment of the invention provides a new type of marketplace "self-guidance system." VLR Servers that may be accessed directly as marketplace self-guidance systems may expand the value of the present invention. Modern societies have an amazing capacity to generate an overabundance of mediocre information. Consider that an average 18-year old in the US has spent nearly 50% more time in front of television than in school, and been exposed to some 18,000 televised murders. New digital environments are poised on the brink of providing new environments within which people can be inundated by gargantuan quantities of dubious information. With the growth of crossborder data flows, this information will be generated by a growing number of societies worldwide, dwarfing the current nation-sized communications channels. Without systems like a "Value Locator Repository" so that customers of these environments can dynamically discover and provide clear paths to the most valuable information, civilization may be condemned to a withering bombardment by overwhelming quantities of potentially harmful information. Once such systems are in place and "value locators" may be looked up or employed interactively during one's work, other ramifications are available: Individual "value locators," or groups of them, could be turned into personal or organizational filters. These filters could enable individuals, workers, business units and organizations to personalize these new digital environments to fit their needs and desires. Consider how such filters could work. Embodiments such as VLR Servers enable individuals and groups to identify patterns of meaningful information sources, and to download those to their own local systems. With appropriate "gatekeeping" software, these navigational pointers could also provide mean-